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ABSTRACT

We describe the development of a simulation framework for anomalous change detection that considers both the
spatial and spectral aspects of the imagery. A purely spectral framework has previously been introduced, but
the extension to spatio-spectral requires attention to a variety of new issues, and requires more careful modeling
of the anomalous changes. Using this extended framework, we evaluate the utility of spatial image processing
operators to enhance change detection sensitivity in (simulated) remote sensing imagery.

1. INTRODUCTION

One difficulty that arises in the development of all kinds of detection algorithms is the acquisition of adequate
quantities of adequately ground-truthed data for training and validation. But this is particularly problematic for
anomaly detection and anomalous change detection (ACD), because anomalies are rare and because anomalies
defy a priori specification. Some datasets have been expressly developed for anomalous change studies1 and these
should be an important part of any research portfolio. But such data is necessarily limited, and if relied upon
exclusively, will provide anecdotal and potentially misleading guidance. Even anecdotal guidance is valuable,
but we must be careful that in our attempts to optimize generic anomaly detection software, we don’t end up
instead with the world’s best detector of folded green tarps.

Simulation, by contrast, provides not only unlimited quantities of data, but the opportunity to adjust the
nature and the variety of that data. This allows the research to more systematically and quantitatively identify
which aspects of which algorithms work best (or fail most dramatically) in which situations. The problems with
simulation are well known; the main one is we can never be sure that a given simulation is “realistic” enough.
There is always a danger that an algorithm that has been optimized to perform well on simulated data will
be tripped up on some seemingly insignificant feature of real imagery that was not built into the simulation.
Hybrid simulation – based on artificial manipulation of real data – can mitigate some of this problem. For target
detection algorithms, for instance, characterizing the background is usually the most challenging part of the
task. A simulated dataset that uses real data as a natural background will provide a realistic challenge to the
detection algorithm.

Cohen and Rotman2 used this approach to embed a variety of subpixel “targets” in hyperspectral imagery
for the purpose of developing anomaly detection algorithms. A simulation framework for anomalous changes was
developed3 in which the anomalies were resampled from the data itself. But this framework treated the pixels in
an image as independent samples and made sense only for testing purely spectral change detection algorithms.
The most widely used anomalous change detection algorithms4–7 are purely spectral, so this framework provided
a way to compare them to each other in a controlled fashion.3 There, the aim was to generate corresponding
pixels in a pair of images in such a way that the individual pixels were not anomalous, but the relationship
between them was anomalous. The aim of the present work is to extend that framework so that we can train
and evaluate ACD algorithms that employ spatial processing. We are motivated by the observation that spatial
processing can improve detection of spatially extended anomalies; this processing however is inconsistent with
the notion, employed in the purely spectral framework, that pixels are independent samples. This is an important
component in our efforts to develop algorithms for anomalous change that employ both spatial as well as spectral
processing of the image pair. As we will see, however, the extension of this framework to cover spatio-spectral
anomalous change detection raises several new issues.
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Figure 1. Simulation framework is illustrated on AVIRIS data9 of the Florida coastline. Starting with a single real image
(top panel), pervasive differences are applied to every pixel in the scene (middle panel). These differences might include
altering intensity, spatial filtering, deliberate misregistration, etc. The anomalous change image (bottom panel) is again
produced from the original image, but the change is made at only a single pixel. For the purely spectral simulation
framework, the change at that pixel is to replace it with some other pixel randomly chose from somewhere else in the
scene. The arrows above illustrate this difference: the fat arrow on the left indicates that all the pixels in the original
image are modified to make the pervasive difference image; and the thin arrow in the middle of the image indicates that
only a single pixel is replaced in the anomalous change image.

Our paradigm here is that spatio-spectral processing is applied to an image, and that is followed by spectral
change detection applied separately to each pixel in the processed image pair. We remark that more integrated
approaches are possible, but these approaches will be investigated elsewhere.8

In Section 2, the more straightforward spectral simulation framework is reviewed, and then in Section 3,
the extension to spatio-spectral is discussed. In Section 3, we also describe a series of numerical experiments
that use the extended framework to compare different spatio-spectral operators. In Section 4 we consider an
alternative way to compute performance for spatially extended anomalies, and show how that affects our results.
In Section 5, we observe that spatial processing alters the statistical correlations between pixels, which will
affect the covariance matrices used in spectral ACD algorithms, and that this changes the the optimal quadratic
detector, and Section 6 uses that approach on a dataset with real anomalies. Finally, Section 7 concludes.

2. SIMULATION FRAMEWORK FOR SPECTRAL
ANOMALOUS CHANGE DETECTION

The aim of anomalous change detection (ACD) is to distinguish actual interesting anomalous changes in the scene
from the incidental uninteresting pervasive differences that appear in the images. The aim of ACD simulation
is to produce both pervasive differences and anomalous changes that are both realistic and adjustable. This is
illustrated in Fig. 1 and described in more detail in the subsections below.

2.1 Simulating pervasive differences

Two images of the same scene, taken at different times and under different conditions, will inevitably exhibit
differences that are pervasive over the entire scene. The most realistic simulation of this effect is to actually take
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two separate pictures, and in practice this is often quite feasible.

But it is still useful to simulate pervasive differences, both for cases when a second image is not available, and
when one wants to control and/or vary properties of those pervasive differences. There is a lot in interest, for
instance, in characterizing how robust ACD algorithms are to misregistration.10–12 The simulation of pervasive
differences that was described in Ref. 3 includes both spectral and spatial operators: brightening, smoothing,
translating (to simulate the effect of misregistration), and these operators are applied to every pixel in the image.

2.2 Simulating anomalous changes

As with pervasive change, there are multiple ways that anomalous changes can be simulated. But, in distinguish-
ing anomalous change from straight anomalies, we have emphasized approaches in which pixels are resampled
from the image. The appeal of these resampled pixels is that although they are acting as anomalous changes, they
are not by themselves anomalous. Indeed, using only spectral detection, they would be virtually undetectable in
a single image; it is only in the context of two images that the pixel and its corresponding pixel in the pervasive
difference image constitute an anomalous change.

A further appeal of this approach is computational. Fig. 1 illustrates the anomalous pixel as if it were a
single pixel. But one can generate a whole image full of anomalous changes by simply scrambling all the pixels in
the original image. The pervasive differences are given by pixel pairs generated from the orignal image and the
pervasive difference image; and the anomalous changes are given by the pixel pairs generated from the pervasive
difference image and the scrambled original image that is now an image of anomalous changes.

Finally, we note that there is a symmetry to this approach. Whether we scramble the pixels in the orignal
image and compare that to the unscrambled pixels in the pervasive difference image, or we keep the original
image intact and scramble the pixels in the pervasive difference image, we get the same result.

3. EXTENDING THE SIMULATION FRAMEWORK
TO SPATIO-SPECTRAL ANOMALOUS CHANGE DETECTION

When we considered the purely spectral anomalous change simulation framework, we took the view that anoma-
lous changes should be distinguished from straight anomalies. In particular, we chose a framework that generated
anomalous changes from components that were themselves unremarkable.

It is acknowledged that interesting changes in real images may not be consistent with this purist point of
view. But by making the distinction between anomalies and anomalous changes, we can develop algorithms that
target the latter without being distracted by the former. If an analyst decides that the best targets to go after
are some combination of anomalies and anomalous changes, then the analyst can decide what that combination
is and combine algorithms accordingly.

Where the purely spectral ACD framework involved moving pixels in an image, the spatio-spectral framework
will employ “patches” taken from other parts of the image. Analogously with the pixels, these patches are not,
by themselves, anomalous, but represent anomalous change. Unfortunately, this analogy breaks down when the
radius over which spatial operators act is larger than the anomalous patch – in the context of those operators,
the patch is something of an anomaly in its own right. It could be detected even in a single image. In other
words, the elegant philosophy used to guide the development of algorithms in the purely spectral case, cannot be
applied with the same rigor for spatio-spectral anomalous change detectors. To begin with, we need to consider
separately three kinds of anomalies, which are essentially characterized by their size:

1. Small sub-pixel anomalous changes are assumed to be entirely contained within a single pixel.

2. Medium-sized anomalous changes are larger than a pixel, but smaller than the characteristic size of the
spatial image processing operators that are considered.

3. Large anomalous changes are larger than the extent of the spatial processing. Being anomalous, however,
these changes are still much smaller than the size of the image or the image archive over which the search
takes place.
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3.1 Large anomalous changes

Considering the last first, we note that large anomalies are conceptually easier to deal with.

Since the patches are larger than the spatial processing, the effect of spatial processing on the patch is
independent of the location of the patch in the image. It follows that the patch can be moved into place after
the spatial processing. That is, for the purposes of the simulation, one can apply the desired spatial processing
to the two images (the original two images, or the original image and its pervasively different variant), and then
apply the ordinary pixel shuffling scheme of the purely spectral simulation framework. One consequence of this
is that we don’t have to specify the size of the anomaly.

In this regime, as Fig. 2 illustrates, we find that smoothing the images invariably improves the ability
to identify large anomalies. It is plausible that other spatial processing would give similar results, and our
experiment in Fig. 2 roughly bears that out, but it also suggests that other spatial operators are not as effective
as simple smoothing.

3.2 Medium anomalous changes

The complications that arise when the anomalies are larger than a pixel but smaller than the characteristic
radii of the spatial image processing operators are ... messy. They depend on numerous details of the anomaly:
size, shape, nature of the boundary between anomaly and background. And the more one has to specify in the
“model” of an anomaly, the more one has strayed from the idea that an anomaly is essentially an unspecified
entity.

Unfortunately, this is probably the most common type of anomalous change observed in practice. So we
cannot simply ignore it because it is ideologically impure. In our simulations, therefore, we have to make some
arbitrary and capricious choices.

We have to choose the size of the anomaly. We also have to choose its shape, and we have taken our patches
to be square. This is of course an unreasonable assumption (as would be the assumption that it is circular, or
octagonal, or. . . ), but since we have to make some kind of choice, we make one that is easy to implement. To get
around the assumption that our anomalies are precisely aligned with the grid of pixels, and also to de-emphasize
the effect of edges in the anomaly detection problem, we “feather” the edges in the simulation. A square anomaly
of size a is centered in a square of (a+ 1)× (a+ 1) pixels; if we keep a to even integer values, then the center of
the anomalous square is also the center of a pixel. This is implemented as an anomalous patch of size a+1 whose
edges are linear combinations of the patch pixel values and the background pixel values. In our simulations,
we make a grid of such anomalies, with each anomaly sufficiently well-separated from the others that spatial
processing will treat them independently.

In Fig. 3, we show the performance of smoothing on the anomalous change detection; we see that this
performance depends on the size of the anomaly – large anomalies are better detected if the image is smoothed
with a large radius kernel, but small anomalies are better detected with little or no smoothing.

3.3 Small anomalous changes

All of the details that are needed to characterize a medium-sized anomaly can be squeezed down to a single
parameter, once the anomaly is small enough to fit inside a single pixel. This parameter is the area fraction of
the anomaly compared to the size of the pixel. While this simplifies the task of generating artificial anomalies,
it does not avoid the problem that the simulated anomalous changes are also anomalies in their own right. As
with the medium-sized anomalies, there is an ideological purity that is lost, as well as a symmetry (it matters
which image the anomaly is found in); but the plethora of choices that are imposed on the framework in the case
of medium-sized anomalies are at least eliminated in this simpler case.

In Fig. 4, we show the effect of three kinds of spatial processing on the performance of various anomalous
change detection algorithms. The smoothing is with a square structuring element and is applied to each of the
spectral bands in the image. In stacking, the image and the smoothed image are combined to be a multispectral
image with twice as many spectral bands, one smoothed and one original. The high-pass filtering is done by
subtracting the smoothed image from the original image.
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(j) close-reconstruct
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Figure 2. Shown is the effect of spatial processing on large anomalies. Var-
ious kinds of spatial processing were applied, each with a square struc-
turing element of radius that varied from r = 1 to r = 15 pix-
els (note r = 0 corresponds to no processing). (a) Simple spatial
smoothing is seen to provide monotonic improvement; the more smooth-
ing the better. (b) Median filtering also produced monotonic improve-
ment, but not as much as smoothing for the same sized window. (c-
j) Other spatial processing gave mixed results, usually improving (but
not monotonically) the performance of the anomalous change detection.
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(a) a = 2 (b) a = 4 (c) a = 6
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(d) a = 8 (e) a = 10 (f) a = 12
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Figure 3. The effect of smoothing on anomalous change detection is shown for a range of anomaly diameters a ranging
from 2 to 12 pixels. The smoothing is over a square of radii ranging from r = 0 (no smoothing) to r = 5 (diameter is 11).
The larger the anomaly, the more smoothing helps (this is consistent with the result seen in Fig. 2(a)). In principle, the
r = 0 curves should be the same for all of these plots; the variation is caused by the randomness in the choice of which
points are chosen as anomaly centers.

The broad conclusions are: 1/ straight smoothing always makes things worse (the suppression of the small
anomaly far outweighs the suppression of the background variability); 2/ stacking, in which the smoothed data
and the original data are treated as if they were different spectral channels, improves performance over the original
unprocessed data; 3/ a high-pass filter of the data (which is the difference between the original image and the
smoothed image) enhances the subpixel anomalies and improves the ROC curves; in fact, for most algorithms,
the high-pass filtered data exhibits better performance than the stacked data; 4/ of the standard algorithms,
chronochrome5 outperformed the “symmetrical” algorithms of covariance equalization,6 hyper,7 and subpix-
hyper,13 but chronochrome is asymmetrical, and the “other” chronochrome did not exhibit this performance
advantage; 5/ although the subpix detector13 had the best ROC curve on the original data, its performance
for stacked data was remarkably poor; 6/ the “optimal” detector (see Section 5) did indeed exhibit the best
performance, and furthermore was able to make better use of the stacked data than any of the other algorithms.

4. USE OF DILATION IN EVALUATING AND COMPARING PERFORMANCE

In our simulations so far, we have taken a single pixel at the center of the anomaly as the target, and counted
it as a “hit” if that pixel were recognized as an anomalous change. But, because the anomalies are patches, a
“hit” anywhere in the patch arguably counts as a detection of an anomalous change. Since the ultimate utility of
anomalous change detection is to provide a list of locations to cue an analyst, it is not necessary to hit the precise
center of the anomalous patch – it is sufficient to draw the analyst’s attention to the presence of an anomalous
change. Similarly, it is not necessary to hit every single pixel in the patch. After having been cued, there is little
benefit to the analyst in having multiple pixels identified for a single anomalous change.

The idea behind the dilation metric is to take the anomalousness image and dilate it by a fixed radius. In
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(a) chronochrome (b) “other” chronochrome
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(c) covariance equalization (d) hyper
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(e) subpix-hyper (f) optimal
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Figure 4. Effect of smoothing, stacking, and high-pass filtering on the ROC curves for simulated subpixel anomalies
(f = 0.25), using the imagery described in Fig. 1, and shown for six different anomalous change detection algorithms.
The smoothing, stacking, and filtering curves are shown for filter radii of r = 1 and r = 2 and in all cases the r = 1 curve
is better.
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(a) a = 2 (b) a = 4 (c) a = 6
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(d) a = 8 (e) a = 10 (f) a = 12
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Figure 5. Same as Fig. 3 except that the dilation metric is used to measure performance. With this metric, it is clear that
larger anomalies are easier to find, even apart from spatial processing.

this way any “hit” will be expanded by an amount equal to the radius of the dilation. Thus, any hit that is
within a radial distance of the center of a target anomalous patch will, after dilation, then overlap the center
pixel. Thus, by picking a dilation size appropriate for the size of the anomalies created (or seen) in the data,
we can ensure that hits anywhere within the spatial extent of the anomalies will be counted as true detections
when calculating the ROC curves.

The effect of including this dilation step is shown in Fig. 5. Although it does not alter our basic conclusions
about the relative effects of different spatial processing, it does for instance show that larger anomalies are easier
to detect.

5. THE PROBLEM WITH HYPER

Let us write x as a vector-valued pixel in the x-image, and y as the corresponding pixel in the y-image. It is
useful to subtract mean values so that, averaged over the image, 〈x〉 = 0 and 〈y〉 = 0. We can describe the pixel
pair with a single vector

z =

[

x

y

]

, (1)

and in terms of that vector, we can express quadratic anomalous change detectors with an expression of the
form3

A(z) = zTQz (2)

where the matrix Q characterizes the detector. When the data can be described by a Gaussian likelihood
distribution, then the optimal detector is given by a ratio of likelihoods, and this quadratic detector can be
expressed as the difference of two inverse covariance matrices:

Q = K−1

normal
−K−1

anomalous
. (3)
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Figure 6. ROC curves illustrate the application of different algorithms to a pair of hyperspectral images which contain
“real” anomalies.1 Chronochrome,5 covariance equalization (CE),6 and Hyper7 are initially applied to the image pair
without any spatial processing. After smoothing both images with a 3× 3 kernel, Hyper is naively applied using Eq. (5)
for Kanomalous. The Hyper-Sim curve is obtained using a Kanomalous that is estimated from simulation.

The covariance matrix associated with the normal data is given by

Knormal =
〈

zzT
〉

=

[

X CT

C Y

]

, (4)

where X =
〈

xxT
〉

, Y =
〈

yyT
〉

and C =
〈

yxT
〉

.

When the anomalous changes are produced by the pixel scrambling scheme described in Fig. 1 for the
spectral simulation framework, the anomalous y, given by ŷ will have the same covariance as the orignal y (i.e.,
〈

ŷŷT
〉

=
〈

yyT
〉

= Y ), but the effect of the scrambling will be to eliminate the cross-covariance; i.e.,
〈

ŷxT
〉

= 0.
Thus, we can simply “write down” Kanomalous, given Knormal, by setting the cross-covariances to zero:

Kanomalous =

[

X 0
0 Y

]

, (5)

But the independence of pixels breaks down in the spatio-spectral case (see the example in the Appendix),
and the convenience of writing down Kanomalous directly from Knormal is lost. One approach is to go ahead and
use Eq. (5) anyway, and this is the standard Hyper algorithm, and its performance is shown in Fig. 4(d). But an
alternative is to use simulation to estimate Kanomalous, and the performance of this algorithm is seen in Fig. 4(f).
This approach, which we call Hyper-Sim, is a more expensive proposition than Hyper, but it can give better
performance as seen in Fig. 4(d,f) and in the following section.

6. AN APPLICATION WITH REAL ANOMALIES

In Fig. 6, we investigate performance with real anomalous changes using data described in Ref. [1]. As was
done there, we projected the hyperspectral data to ten components based on the principal components of a third
dataset. Thus, the same projection was applied to both images, and that projection corresponded approximately
to principal components of those images. These two images were both taken on October 14, 2005, and in one of
the two images a pair of tarps has been laid out in the grass; these are the anomalous changes that we are going
to try to detect.
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We first applied chronochrome, covariance equalization, and hyper directly to the imagery, without any spatial
processing. To generate the additional results we applied spatial smoothing to the images using a flat 3× 3-pixel
kernel. The Hyper-Naive result in Fig. 6 is the hyper algorithm applied directly to the smoothed images (as
suggested in the large anomalous change case). The Hyper-Sim algorithm is also applied to the smoothed images,
but the Kanomalous covariance is different. Specifically, it is estimated from anomalous change images produced
within the simulation framework: 1) We sample a regular grid of pixels, where pixels are spaced sufficiently
far apart, that the spatial smoothing will not affect adjacent samples. We treat each image independently and
randomly swap the pixel values at grid points within each image. This step simulates the spectral component of
the anomalous change. 2) The second step is to apply the spatial operator we expect to use, which in our case,
is the 3-pixel wide spatial smoothing. 3) The final step is to estimate Kanomalous using pixel values from the grid
points. This new covariance leads to the significantly improved result at low false alarm rate, as seen in Fig. 6.

7. CONCLUSIONS

This study was motivated, in part, by the observation that spatial processing of imagery can lead to more
effective classification of multispectral imagery, and that a systematic scheme for building a spatio-spectral image
processing pipeline can be optimized for this task.14 In asking whether we can extend this idea of an optimized
image processing pipeline to the problem of anomalous change detection, we realized that we would first need
to find efficient and systematic ways to evaluate any given pipeline. The simulation framework described here is
our first cut at providing this systematic evaluation.

While there is a simple, natural, and even symmetrical simulation framework that can be used to evaluate
purely spectral ACD algorithms, the extension to spatio-spectral ACD was found to be more complicated. By
their very definition, anomalies resist specification. But we found it necessary to specify the characteristic size
of the anomalies we wanted to simulate, and we found (not surprisingly) that the performance of spatio-spectral
ACD algorithms depended on the size of those anomalies.

For large anomalous changes, the more smoothing the better. Smoothing reduces the variability of the back-
ground without washing out the anomalous difference. Meanwhile for medium-sized anomalies, some smoothing
helps, but too much washes out the anomalous difference.

It is possible to identify subpixel anomalous changes by purely spectral methods,13 but our investigation
concentrated on enhancing that detection with spatial methods. Although smoothing degraded the detection,
effectively “washing out” the anomalies more than reducing background variance, we found that a stack composed
of the original image and a smoothed image did enhance the detection. Closer examination revealed that a linear
combination of these images resembled a sharpening, or a high-pass filtering, of the image, and using the high-
passed images directly also improved performance.
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APPENDIX A. EXAMPLE OF INDUCED CROSS-COVARIANCE
BY SPATIAL PROCESSING

In Section 5, we remarked that spatial processing can induce correlations that would not be present in the
unprocessed data. There is, in particular, an assumption associated with the Hyper algorithm7 that the cross-
covariance of the x-image and y-image is zero for the anomalous pixels. But if the anomaly is smaller than the
size of the spatial processing, then the effect of spatial processing is to produce a nonzero cross-covariance, and
this leads to the Hyper algorithm being outperformed by other algorithms. To see, with simple but concrete
example, how this nonzero cross-covariance arises, consider the following:

Consider a pair of one-dimensional images with 1×N pixels. Let xi denote the ith pixel in the first image,
and yi be the corresponding pixel in the second image. To keep things simple, let the images be normalized
(
〈

x2
i

〉

= 〈yi〉
2
= 1), and without spatial correlation: 〈xixj〉 = 〈yiyj〉 = δij , where δij is the Kronecker delta

function: it is one when i = j and zero otherwise. Now, the images are correlated with each other (after all,
they are two images of the same scene), and in particular, we have 〈xiyi〉 = c for some correlation factor c < 1.
But the correlation only holds at corresponding pixels: so 〈xiyj〉 = cδij .

Let us introduce a single-pixel anomaly into the y image at position t; then ŷt = ys where s is a random
position in the image.

First, before we do any spatial processing, let us look at the covariance matrices associated with this data.

Recall that z =

[

x
y

]

, and write

Knormal =
〈

ziz
T
i

〉

=

[

〈xixi〉 〈xiyi〉
〈yixi〉 〈yiyi〉

]

=

[

1 c
c 1

]

(6)

and

Kanomalous =
〈

ẑtẑ
T
t

〉

=

[

〈x̂tx̂t〉 〈x̂tŷt〉
〈ŷtx̂t〉 〈ŷtŷt〉

]

=

[

〈xtxt〉 〈xtys〉
〈ysxt〉 〈ysys〉

]

=

[

1 0
0 1

]

. (7)
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Notice that the off-diagonal cross-covariance terms of Kanomalous are zero.

Now, consider the case for stacked images, where one layer of the stack is the original image and the second
layer is smoothed with a smoothing radius r = 1:

xi =

[

xi

(xi−1 + xi + xi+1)/3

]

, (8)

and similarly for yi. Then, we can work out that

Knormal =

[ 〈

xix
T
i

〉 〈

xiy
T
i

〉

〈

yix
T
i

〉 〈

yiy
T
i

〉

]

=









1 1/3 c c/3
1/3 1/3 c/3 c/3
c c/3 1 1/3

c/3 c/3 1/3 1/3









. (9)

For the anomalous pixels, we have

ŷt =

[

ŷt

(yt−1 + ŷt + yt+1)/3

]

=

[

ys

(yt−1 + ys + yt+1)/3

]

. (10)

This gives
〈

ŷtŷ
T
t

〉

=

[

1 1/3
1/3 1/3

]

, (11)

and
〈

ŷtx̂
T
t

〉

=
〈

ŷtx
T
t

〉

=

[

0 0
0 2c/9

]

. (12)

Thus we see that the cross-covariance
〈

ŷtx̂
T
t

〉

at the anomalous pixels t in the image is now nonzero. This leads
to

Kanomalous =









1 1/3 0 0
1/3 1/3 0 2c/9
0 0 1 1/3
0 2c/9 1/3 1/3









. (13)

and thus the optimal quadratic coefficient matrix Q = K−1

normal
−K−1

anomalous
differs from what the Hyper algorithm

would prescribe.
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